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Abstract. The present paper deals with an eigenvalue problem for a hemivariational inequality,
´ ´arising in the study of a mechanical problem: the buckling of a von Karman plate adhesively

connected to a rigid support with delamination effects. For this eigenvalue problem an existence
result is obtained by applying a critical point method suitable for nonconvex nonsmooth functions.
Further, a result concerning the multiplicity of solutions is proved. The mechanical interpretation
of these results is briefly discussed.
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1. Introduction

In the present paper a static problem of nonsmooth mechanics concerning a special
´ ´ ´ ´category of plates, the von Karman plates, is discussed. The von Karman plates are

thin plates undergoing moderate large deflections. The theory used for their stability
´ ´analysis is the von Karman plate theory. In the mechanical model studied, a von

´ ´Karman plate is adhesively connected to a rigid support. The adhesive contact law is
nonmonotone and can be derived by a nonconvex nonsmooth potential, called
superpotential. This law leads the variational formulation of the problem to a
hemivariational inequality if classical boundary conditions are assumed to hold. The
theory of hemivariational inequalities has been introduced and developed by P.D.
Panagiotopoulos (see Naniewicz and Panagiotopoulos, 1995; Panagiotopoulos, 1993,
1985b). This theory generalizes the classical variational inequalities, for problems
involving nonconvex nonsmooth functions. The variational approach in the study of
hemivariational inequalities permits the search of the qualitative behavior of their
solutions (the most recent work is presented in Motreanu and Panagiotopoulos
(1998).

The plate studied is subjected to buckling forces in its plane. Due to the
parametric expression of the buckling forces, the buckling problem of the adhesively

´ ´supported von Karman plate is an eigenvalue hemivariational inequality. This
eigenvalue hemivariational inequality on the sphere, is the variational formulation of
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the buckling problem for prescribed cost or weight, or for a given energy
consumption. Given the relation of the theory of hemivariational inequalities with
nonconvex nonsmooth optimization, the considered eigenvalue problem can be
equivalently formulated in a superpotential form. Its solution(s) characterize the
equilibrium state(s) of the plate. One should remind that the mechanical problem,
due to nonconvexity, admits in general multiple solutions.

In the mathematical study, the first concern is to search for local critical points,
which correspond to the solutions of the mechanical problem. Thus an existence
theorem is proved by using the classical critical point method. Further a multiplicity
result is given for the solutions of the eigenvalue hemivariational inequality on the
sphere, following Theorem 3.2 of Chang (1981).

Existence and approximation results for related plate problems have been derived
in Panagiotopoulos (1985a, 1989), Panagiotopoulos and Stavroulakis (1988, 1990).
Related mathematical problems for eigenvalue problems in hemivariational
inequalities have been studied in Bocea, Motreanu and Panagiotopoulos (to appear),
Motreanu and Panagiotopoulos (1995a, 1995b, 1996, 1997).

2. The mechanical study

´ ´Let us consider a von Karman plate, of constant thickness h, adhesively connected
to a rigid support. In the undeformed state the middle surface of the plate occupies

2an open bounded and connected subset V of R , referred to a fixed right-handed
Cartesian coordinate system Ox x x . The plate lies in the Ox x plane. The1 2 3 1 2

boundary G of the plate is assumed to be appropriately regular (in general, a
0,1Lipschitz boundary C is sufficient). Let also the binding material occupy a subset

]
V9 such that V9 , V and V9 > G 5 5.

We denote by z(x) the vertical deflection of the point x [ V and by f 5

(0, 0, f (x)) the distributed vertical load. Further, let u 5 hu , u j the inplane3 1 2

displacement of the plate.
´ ´The plate obeys the von Karman plate theory, which gives rise to the following

system of differential equations

K DDz 2 h(s z ) 5 f , (2.1)ab ,b ,a

and

s 5 0 , (2.2)ab,b

with

1
]S Ds 5 C « (u) 1 z z (2.3)ab abgd gd ,g ,d2

1
]« (u) 5 (u 1 u ) . (2.4)ab a,b b,a2

Here the subscripts a, b, g, d 5 1, 2 correspond to the coordinate directions; hs j,ab
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h« j and hC j denote the stress, strain and elasticity tensors in the plane of theab abgs
`plate. The components of C are elements of L (V) and have the usual symmetry and

3 2ellipticity properties. Moreover, K 5 Eh /12(1 2 n ) is the bending rigidity of the
plate with E the modulus of elasticity and n the Poisson ratio. The plate thickness is
denoted by h. For simplicity we consider the plate to be isotropic and homogeneous.
In the simplified mechanical model studied, delamination effects are caused by the

]
interlaminar normal stress f. For the mathematical calculus, f is split into f, which]] 2describes the action of the adhesive and f [ L (V), which represents the external
loading applied on the plate:

]] ]
f 5f 1f in V . (2.5)

The mechanical behavior of the adhesive material as well as cracking and crushing
]

effects, are given by a phenomenological law, connecting f with the corresponding
deflection of the plate:

] ˜2f [ b(z ) in V9 , (2.6)

˜where b is a multivalued nonmonotone function defined as in Panagiotopoulos
(1993), Equation (1.2.53). Its graph is made by filling in the jumps in the graph of a

`function b [ L (R).loc ]
The following relation complete in a natural way the definition of f :

]
f 5 0 in V 2 V9 . (2.7)

It can be proved (cf. Chang, 1981) that a locally Lipschitz function j exists, with
j

j(j ) 5E b(j ) dj , (2.8)1 1
0

] ˜such that ­j(j ) , b(j ). If b(j 6) exists for every j [ R, then (cf. Panagiotopoulos,
1993, Section 1.2)

]b̂(j ) 5­j(j ) , (2.9)

]where ­ is the generalized gradient of Clarke.
From relation (2.1) it is obvious that only adhesive forces in the normal to the

plate direction are considered in this model. Slip between the lower surface of the
plate and the rigid support is considered to occur without resistance force (cf. a
frictionless contact boundary). A more complicated model with skin effects has been
proposed and studied in Panagiotopoulos (1989).

We assume that the following boundary conditions hold on the plate boundary

z 5 0 on G . (2.10)

For the in-plane action of the plate we assume the following parametrized boundary
loading conditions

s n 5 lg , a 5 1, 2 on G , (2.11)ab b a
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Figure 1. Geometry and notation of the mechanical model studied.

where g are selfequilibrating forces and l is a scalar parameter.a

For the moment we assume that g 5 0, 5 0, a 5 1, 2.a

Let us now introduce the functional framework within which the previously
1 2˚formulated B.V.P will be studied We assume that u, v [ [H (V)] and z, z [ Z,

where
2Z 5 hz /z [ H (V), z 5 0 on Gj .
12 ˚or Z 5 H (V) > H (V).

2 2Moreover, let f [ L (V), DDz [ L (V).
We will now derive the variational formulation of the problem. From (2.1),

multiplying by z 2 z, integrating and applying the Green–Gauss theorem (cf.
Panagiotopoulos, 1985b, Section 7.1.1), we obtain the expressions

a(z, z) 1E hs z (z 2 z ) dVab ,a ,b
V

5E hs z n (z 2 z ) dG 1E Q(z )(z 2 z ) dGab ,a b
G G

­(z 2 z )
]]]2 E M(z ) dG 1E f(z 2 z ) dV , (2.12)

­nG V

where a,b 5 1, 2.
Here

a(z, z) 5 K E [(1 2 n)z z 1 n Dz Dz] dV, a, b 5 1, 2, , n , 1/2 (2.13),ab ,ab
V

´ ´is the bilinear form of the elastic energy of the von Karman plate,
2 2M(z ) 5 2K[n Dz 1 (1 2 n)(2n n z 1 n z 1 n z )] (2.14)1 2 ,12 1 ,11 2 ,22
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is the bending moment and

­ Dz ­ 2 2]] ]F GQ(z ) 5 2K 1 (1 2 n) [n n (z 2 z ) 1 (n 2 n )z ] (2.15)1 2 ,22 ,11 1 2 ,12­n ­t

is the total shearing force on the plate boundary.
Here n is the Poisson ratio and t is the unit vector tangential to G, such that n, t

and the Ox axis form a right-handed system.3

Applying the same technique of variational calculus to the in-plane relation (2.2),
we have that

E s « (v 2 u) dV 5E s n (v 2 u ) dG . (2.16)ab ab ab b a a
V G

Equations (2.12) and (2.16) express the principle of virtual work for the bending
and the stretching respectively of the plate.

We introduce the following notations

R(h, k) 5E C h k dV, a, b, g, d 5 1, 2 (2.17)abgd ab gd
V

and

P(z, z) 5 hz z j, P(z, z ) 5 P(z ) , (2.18),a ,b

where h 5 hh j and k 5 hk j, a, b 5 1, 2 are 2 3 2 tensors.ab ab

By taking into account the variational equalities (2.12), (2.16), the boundary
conditions and the inequality giving the multivalued law (2.6)

]0j (z, z 2 z ) >f(z 2 z ) , (2.19)

we obtain the variational formulation of the delamination problem of one von
´ ´Karman plate adhesively connected to a rigid support:

1 2(P) find u [ [H (V)] and z [ Z, such as to satisfy the hemivariational inequality

1 0]a(z, z 2 z ) 1 hR(«(u) 1 P(z ), P(z, z 2 z )) 1E j (z, z 2 z ) dV2 V9

]]
>E f(z 2 z ) dV , ;z [ Z (2.20)

V

and the variational equality

1 1 2]R(«(u) 1 P(z ), «(v 2 u)) 5 0 , ;v [ [H (V)] . (2.21)2

Further we shall eliminate the in-plate displacements of the plate. To this end we
note first that R(. , .) as defined in (2.17) is a continuous, symmetric, coercive

2 4 2 2 4bilinear form on [L (V)] and that P : H (V) → [L (V)] of (2.18) is a completely
continuous operator. Thus (2.21) and the Lax–Milgram theorem imply that to every

1 2deflection z [ Z, there corresponds a plane displacement u(z ) [ [H (V)] . Indeed,
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due to Korn’s inequality, R(«(u), «(v)) is a bilinear coercive form on the quotient
] ]1 2space [H (V)] /R, where R is the space of the in-plane rigid-plate displacements

defined by
] 1 2] ] ] ]R 5 hr /r [ [H (V)] , r 5 a 1 bx , r 5 a 2 bx , a , a , b [ Rj . (2.22)1 1 2 2 2 1 1 2

From (2.21) it results that

2 4«(u(z )) : Z → [L (V)] (2.23)

is uniquely determined and is a completely continuous quadratic function of z, since
«(u(z )) is a linear continuous function of P(z ). We also introduce the completely

2 4continuous quadratic function G : Z → [L (V)] which is defined by

1
]z °G(z ) 5 «(u(z )) 1 P(z ) (2.24)2

and satisfies the equation

R(G(z ), «(u(z ))) 5 0 . (2.25)

We define the operators A : Z → Z9 and C : Z → Z9 (where Z9 is the dual of Z and
k. , .l the duality pairing between Z and Z9), such thatZ

kAz, zl 5 a(z, z) (2.26)Z

and

kC(z ), zl 5 hR(G(z ), P(z, z)) . (2.27)Z

From (2.25) and (2.27), it results that

kC(z ), z l 5 hR(G(z ), 2G(z )) > 0 . (2.28)Z

Thus problem (P) results to the following form:

find z [ Z, so as to satisfy the hemivariational inequality

0a(z, z 2 z ) 1 kC(z ), z 2 z l 1E j (z, z 2 z ) dVZ
V9

]]
>E f(z 2 z ) dV , ;z [ Z . (2.29)

V

The last hemivariational inequality characterizes the position of equilibrium of the
delamination problem.

We are now in the position to formulate the corresponding eigenvalue problem.
To this end we apply the method presented in Panagiotopoulos (1985b), Section 7.2,
by assuming that (2.11) holds with g and g nonzero. We obtain the following1 2

eigenvalue problem for a hemivariational inequality:

(P ) find (z, l) [ Z 3 R such as to satisfy the expressionl
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0a(z, z 2 z ) 1 kC(z ), z 2 z l 1E j (z, z 2 z ) dVZ
V9

> l(Bz, z 2 z ) , ;z [ Z , (2.30)Z

where (. , .) is the inner product of Z and B is a linear selfadjoint compact operatorZ

such that

0(Bz, z) 5 2h E s z z dV , ;z, z [ Z . (2.31)Z ab ,a ,b
V

0For the meaning of s see Panagiotopoulos (1985b), Section 7.2.ab

The eigenvalue problem (2.31) will be studied in the next sections on the
technical assumption (cf. Panagiotopoulos, 1985b, Equation 7.2.64) that the
boundary G of every subdomain V , V of the plate is subjected to compressive1 1

forces, i.e., that almost everywhere on G the inequality1

0] ]s n n < 0 (2.32)i j

] ]holds, where n 5 hn j is the unit normal outward vector on G . Then (2.32) impliesi 1

that

(Bz, z ) . 0 , ;z [ Z, z ± 0 . (2.33)Z

´ ´For general unilateral problems of von Karman plates, the variational inequality
formulation is not equivalent to a minimum problem because of the geometric
nonlinearity of the physical model. However, problem (P ) is equivalent to thel

following problem (cf. Panagiotopoulos, 1985b, Proposition 7.1.3):

find z [ Z such that for some l [ R,
]0 [­I(z ) , (2.34)

where

1 h l
] ] ]I(z ) 5 a(z, z ) 1 R(G(z ), P(z )) 1E j(z ) dV 2 (Bz, z )z , (2.35)2 2 2V9

corresponds to the potential energy of the plate.
The equivalency of the solutions of the foregoing problem with problem (P ) isl

discussed in Panagiotopoulos (1985b, pp. 150–151.
We consider now the sphere S in Z, described as followsr

2S 5 hz [ Z : (Bz, z ) 5 r j ,r Z

where r is some positive number. In mathematical terms S is a submanifold of Z.r

Corresponding to each r . 0 we formulate problem (P ) in the following form:l

(P ) find z [ S and l [ R such thatl,r r
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0a(z, z 2 z ) 1 kC(z ), z 2 z l 1E j (z, z 2 z ) dVZ
V9

> l(Bz, z 2 z ) , ;z [ Z . (2.36)Z

´ ´Problem (P ) corresponds to the buckling of the considered von Karman plate forl,r
2given cost or weight. The constraint (Bz, z ) 5 r imposed, means that we have aZ

system with prescribed cost or weight or, in some cases energy consumption.

3. The mathematical study

3.1. AN EXISTENCE RESULT

2We consider space Z to be equipped with the classical H -norm. Z being a closed
2subspace of H (V), is a Banach space (Z, i ? i ). Z is also a Hilbert space with theZ

inner product (. , .) associated to the norm i ? i . We denote by k. , .l the dualityZ Z Z

pairing between Z and Z9.
2Z is densely and compactly imbedded in L (V), where V is a bounded connected

2domain of R . Let us denote by C (V) the positive constant of the imbedding2
2Z , L (V), which means that

iz i < C (V)iz i , ;z [ Z . (3.1.1)2L 2 Z

We remind that a : Z 3 Z → R is a continuous symmetric bilinear form, B : Z → Z is
a linear compact operator and C : Z → Z9 is a (nonlinear) compact operator.

`Let the function b [ L (R) satisfy the assumptionloc

(H ) there exist constants a , a [ R with a . 0 such that the following growth1 1 2 2

condition holds

ub(t)u < a 1 a utu , ; [ R , (3.1.2)1 2

where u ? u is the Euclidean norm.
2We define now the function j : L (V) → R

t

j(t) 5E b(s) ds , t [ R . (3.1.3)
0

An existence result for (P ) is stated in the following theorem.l

THEOREM 1. Assume that the hypotheses (H ) holds. Then, for every l [ R1

satisfying

2
2iai 2 a (C (V)) 2 liBi . 0 , (3.1.4)2 2

there exists z [ Z solving (P ).l
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Proof. Let us fix some l [ R as in the statement of the theorem. Corresponding
to this l let I : Z → R be the functional defined by

1 h l
] ] ](Iz ) 5 a(z, z ) 1 R(G(z ), P(z )) 1E j(z ) dV 2 (Bz, z ) , ;z [ Z .Z2 2 2V9

(3.1.5)

The functional I is well defined and locally Lipschitz.
2We also define the functional J : L (V) → R such that

2J(z ) 5E j(z ) dV , z [ L (V) . (3.1.6)
V9

In view of (H ), J is well defined and locally Lipschitz in Z (cf. Chang, 1981). We1

denote by Ju the restriction of J in Z.Z

We will prove that the functional I is bounded from below on Z. Indeed from
(2.28), 3.1.1) and hypothesis (H ), we obtain the estimate1

1 1 l2 1 / 2 2 2] ] ]I(z ) > 2 iai iz i 2 a (meas(V)) iz i 2 a iz i 2 iBi iz i2 2Z 1 L 2 L Z2 2 2
1 12 1 / 2 2 2] ]> 2 iai iz i 2 a (meas(V)) C (V)iz i 2 a (C (V)) iz iZ 1 2 Z 2 2 Z2 2
l 2]2 iBi iz iZ2

or

1 1 l2 2] ] ]S DI(z ) > 2 iai 2 a (C (V)) 2 iBi iz i2 2 Z2 2 2
1 / 2

2 a (meas(V)) C (V)iz i , ;z [ Z , (3.1.7)1 2 Z

where meas(V) is the Lebesgue measure of V.
Hence for the given l the functional I is bounded from below on Z, i.e., there

exists c 5 inf I . 2`.Z

Taking into account (3.1.5) and employing the calculus with generalized
gradients, it turns out that

] ]
­I(z ) 5 Az 1­(Ju )(z ) 2 lLBz 1 C(z ) , (3.1.8)Z

where L : Z → Z9 is the duality mapping kLz, zl 5 (z, z) , z, z [ Z.Z Z

We will prove now that the locally Lipschitz functional I satisfies the Palais–
Smale condition in the sense of Chang (see, e.g., Panagiotopoulos, 1993, p. 180).
Accordingly, let a sequence (z ) , Z fulfilln

I(z ) < M , (3.1.9)n

]for constant M . 0 and for some J [­I(z ) withn n

J → 0 in Z9 as n → ` . (3.1.10)n

From (3.1.7), (3.1.9) one finds easily that I(z ) is bounded on Z. The boundednessn
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of I and the fact that I is locally Lipschitz lead to the conclusion that (z ) is boundedn

in Z.
]In view of (3.1.8), (3.1.10), let a sequence v [­(Ju )(z ) such thatn Z n

J 5 Az 1 v 2 lLBz 1 C(z ) → 0 in Z9 as n → ` . (3.1.11)n n n n n

The boundedness of (z ) in Z and the compactness of the mapping C : Z → Z9n

implies the convergence of C(z ) along a subsequence in Z denoted again by C(z ).n n
2The compactness of the imbedding Z , L (V) assures that a subsequence of (z )n

2also denoted by (z ), converges in L (V). On the other hand the density of then
2imbedding Z , L (V) implies that

] ]v [­(Ju )(z ) ,­J(z ) , ;n , (3.1.12)n Z n n

(according to Theorem 2.2 of Chang, 1981).
2The facts that J is locally Lipschitz on L (V) and that (z ) is bounded in Z ensuren

2 2that (v ) is bounded in L (V). By the compactness of the imbedding L (V) , Z9 itn

turns out that (v ) converges along a subsequence in Z9. Letting n → ` in (3.1.11)n

implies the convergence along a subsequence of (2Az 1 lLBz ) in Z9.n n

Notice that (3.1.4) implies

2iai 2 liBi . 0 . (3.1.13)

Now we can write the following inequality

2(2iai 2 liBi)iz 2 z i < a(z 2 z , z 2 z ) 2 l(B(z 2 z ), z 2 z )n m Z n m n m n m n m Z

< iA(z 2 z ) 2 lLB(z 2 z )i iz 2 z i , ;m, n [ N, m, n > 1 .n m n m Z 9 n m Z

(3.1.14)

The convergence (2Az 1 lLBz ) in Z9 and the relations (3.1.13) and (3.1.14)n n

show that (z ) contains a Cauchy subsequence in Z9; thus (z ) converges along an n

subsequence in Z to z. Hence the Palais–Smale condition for the functional I is true.
The boundedness property of I and the Palais–Smale condition for I that was just

verified, are the only requirements to apply the Palais–Smale minimization theorem
in Chang’s version of the locally Lipschitz functions to the functional I (see, e.g.,
Panagiotopoulos, 1993, p. 180). It follows that there exists z [ Z with

I(z ) 5 inf I . (3.1.15)Z

In particular, we derive that

]0 [­I(z ) (3.1.16)Z

or by taking into account (3.1.8)

0a(z, z) 2 l(Bz, z) 1 J (z ; z) 1 hR(G(z ), P(z, z)) > 0 . (3.1.17)Z

Given that the functional J is locally Lipschitz in Z, its generalized gradient satisfies
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] ]
­J(z ) ,E ­j(z ) dV , ;z [ Z (3.1.18)

V

(cf. Panagiotopoulos, 1993, Proposition 2.5.3).
From (3.1.12), (3.1.18) it results that

] ]
­(Ju )(z ) ,E ­j(z ) dV , ;z [ Z . (3.1.19)Z

V

From (3.1.17), (3.1.19) we conclude that

2a(z, z) 1 l(Bz, z) 2 hR(G(z ), P(z, z)) <E max q(z) dV (3.1.20)Z ]
V q[­j(z)

and by recalling the definition of the generalized gradient

0
2a(z, z) 1 l(Bz, z) 2 hR(G(z ), P(z, z)) <E j (z ; z) dV , ;z [ Z . (3.1.21)Z

V

This completes the proof of Theorem 1. h

3.2. A MULTIPLICITY RESULT

1 / 2In this section we assume that Z is equipped with the (Bz, z ) -norm, in contrast to
2Section 3.1 where Z is equipped with the classical H -norm. Moreover the duality

mapping L : Z → Z9 is given by

kLz, zl 5 (Bz, z) . (3.2.1)Z Z

We make the following hypotheses

(H ) for every z [ Z, j( ? ) is even.2

(H ) for every sequence (z ) [ S with z → z weakly in Z,3 n r n

a(z , z ) 1 kC(z ), z l → a [ R (3.2.2)n n n n Z 0

and for every x [ Z9 with

]x [­j(z ) , (3.2.3)

then

1
]iai 2 a 1E kx, z l dV . 0 . (3.2.4)S D2 0 Z

Vr

The theoretical basis of the following theorem is Theorem 3.2 of Chang (1981).

THEOREM 2. Assume that hypotheses (H ), (H ), (H ) hold. Then, problem (P )1 2 3 l,r

admits infinitely many distinct pairs of solutions (6z , l ) , S 3 R withn n n>1 r
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1
]l 5 kA(z ) 1 C(z ), z l 1E kx , z l dV , n > 1 , (3.2.5)S Dn 2 n n n Z n n Z

Vr
]where x [­j(6z ).n n

Proof. We consider the functional F : Z → R given by

1 h
] ]F(z ) 5 a(z, z ) 1 R(G(z ), P(z )) 1 Ju (z ) , (3.2.6)Z2 2

2where J : L (V) → R the functional

2J(z ) 5E j(z ) dV , z [ L (V) . (3.2.7)
V

and Ju the restriction of J and Z. In view of hypothesis (H ), J is a locallyZ 1
2Lipschitz functional on L (V) or Z.

We check now that the locally Lipschitz functional F is even. We have that

a(2z, 2z ) 5 a(z, z ) , (3.2.8)

and

R(G(2z ), P(2z )) 5 R(G(z ), P(z )), as G(2z ) 5 G(z ), P(2z ) 5 P(z ) .

(3.2.9)

From (3.2.8), (3.2.9) and hypotheses (H ), it follows that F is even, i.e.,2

F(2z ) 5 F(z ) for every z [ Z . (3.2.10)

Let F u the restriction of F on the sphere S .S rr

From (2.28), (3.1.1) and hypothesis (H ) we see that F u is bounded from below:1 Sr

1 12 1 / 2 2] ](F u )(z ) > 2 iai iz i 2 a (meas(V)) iz i 2 a iz i2 2S Z 1 L 2 Lr 2 2
1 12 1 / 2 2 2] ]> 2 iai iz i 2 a (meas(V)) C (V)iz i 2 a (C (V)) iz iZ 1 2 Z 2 2 Z2 2
1 1 2 2 1 / 2] ]S D> 2 iai 2 a (C (V)) r 2 a (meas(V)) C (V)r , (3.2.11)2 2 1 22 2

where meas(V) is the Lebesgue measure of V.
For continuing the proof, it is necessary to remark that the expression of the

]generalized gradient ­(F u )(z ) at the point z [ S is given by the formulaS rr

1] ]]­(F u )(z ) 5 q 2 kq, z l Lz : q [­F(z ) , ;z [ S , (3.2.12)H JS 2 Z rr r
] ]where ­F(z ) 5 Az 1 C(z ) 1­(Ju )(z ).Z

The next step is to prove that the functional F u satisfies the Palais–SmaleSr

condition in the sense of Chang. Let us consider a sequence (z ) [ S such thatn r
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(F u )(z ) < M for constant M . 0 and such that there exists some sequenceS nr

(q ) [ Z9 fulfilling the conditionsn

]q [­F(z ) (3.2.13)n n

and

1
]q 2 kq , z l Lz → 0, in Z9 as n → ` , (3.2.14)n 2 n n Z nr

or equivalently

1
]Az 1 C(z ) 1 w 2 kAz 1 C(z ) 1 w , z l Lz → 0n n n 2 n n n n Z nr

in Z9 as n → ` , (3.2.15)
]where w ­(Ju )(z ), ;n.n Z n

We have to prove that (z ) contains a convergent subsequence in Z.n

By the fact that the sequence (z ) is contained in S it is obvious that (z ) isn r n

bounded in Z. So up to a subsequence we may conclude that

z → z weakly in Z as n → ` for some z [ Z . (3.2.16)n

2The compactness of the imbedding Z , L (V), provides the convergence
2z → z in L (V) . (3.2.17)n

2The density of the imbedding Z , L (V) and theorem 2.2 of Chang (1981) imply
that

] ]v [­(Ju )(z ) ,­J(z ) . (3.2.18)n Z n n

2Since J is locally Lipschitz on L (V) and (z ) is bounded in Z, (v ) is also boundedn n
2in L (V). Thus, for a subsequence of (v ) also denoted by (v ), we have thatn n

2v → v weakly in L (V) as n → ` (3.2.19)n

2and due to the compactness of the imbedding L (V) , Z9 ,

v → v in Z9 as n → ` . (3.2.20)n

Taking into account (3.2.16) and (3.2.20)

kv , z l → kv, z l , as n → ` . (3.2.21)n n Z Z

By the boundedness of z in Z one supposes that a(z , z ) converges in R. Then n n

boundedness of (z ) and the compactness of the mapping C : Z → Z9 imply then

convergence of C(z ) along a subsequence in Z9. Thus knowing that z convergesn n

weakly in Z,

a(z , z ) 1 kC(z ), z l → a0 [ R . (3.2.22)n n n n Z

By taking into account the convergences stated above, from (3.2.15) we derive that
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1
]Az 2 (a 1 kv, z l )Lz converges in Z9 as n → ` . (3.2.23)n 2 0 Z nr

From (3.2.17), (3.2.20) we conclude that

] ]v [­J(z ) ,E ­j(z ) dV (3.2.24)
V

and consequently

kw, z l 5E kx, z l dV , (3.2.25)Z Z
V

]where x [­j(z ).
Now we can write the following inequality

1 2]iai 2 a 1E kx, z l dV iz 2 z iS DS D2 0 Z n m Z
Vr

1
]< a(z 2 z , z 2 z ) 2 a 1E kx, z l dV (z 2 z ), z 2 zSS D Dn m n m 2 0 Z n m n m

V Zr
1
]< iA(z 2 z ) 2 a 1E kx, z l dV L(z 2 z )i iz 2 z i ,S Dn m 2 0 Z n m Z 9 n m Z

Vr
;m, n [ N, m, n > 1 . (3.2.26)

The relations (3.2.4), (3.2.23) and hypothesis (H ) show that (z ) contains a Cauchy3 n

sequence in Z; thus (z ) converges along a subsequence in Z to z. This completesn

the verification fo the Palais–Smale condition for F u .Sr

At this point, we have verified all the requirements for Theorem 3.2 of Chang
(1981) for locally Lipschitz functions.

Let us denote by Y the family of closed and symmetric with respect to the origin
0 , subsets of S . Let us denote by g(S) the Krasnoselski genus of the set S [ Y, thatZ r

is the smallest integer k [ N < h1`j for which there is an odd continuous mapping
kfrom S into R \h0j. For every n > 1, let

G 5 hS , S : S [ Y, g(S) > nj . (3.2.27)n r

According to Chang’s theorem, the critical points of F on S arer

b 5 inf sup F u (z ) , (3.2.28)n SrS,G z [Sn

i.e., there exist critical points (6z ) such thatn

]0 [ (­F u )(6z ) , (3.2.29)Z S nr

with

(F u )(6z ) 5 b , n > 1 . (3.2.30)S n nr

]From the formula (3.2.29) it follows that there exist q [­F(6z ) such thatn n
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1
]q 2 kq , z l L(6z ) 5 0 . (3.2.31)n 2 n n Z nr

Having

]kq , zl [­F(6z )zn Z n

], kA(6z ), zl 1 kC(6z ), zl 1E ­j(6z )z dV , (3.2.32)n Z n Z n
V

]for x [­j(6z ), (3.2.32) is equivalent ton n

kq , zl 5 a(6z , z) 1 kC(6z ), zl, zl 1E kx , zl dV . (3.2.33)n Z n n Z n Z
V

From (3.2.31), (3.2.33) it results that

a(6z , z) 1 kC(6z ), zl 1E kx , zl dVn n Z n Z
V

1
] S2 a(6z , 6z ) 1 kC(6z ), 6z l2 n n n n Zr

1 E kx , 6z l dV (B(6z ), z) 5 0 . (3.2.34)Dn n Z n Z
V

]We remind that x [­j(6z ) means thatn n

0kx , 6z l < j (6z , z) , (3.2.25)n n Z n

which makes (3.2.24) as follows

0a(6z , z) 1 kC(6z ), zl 1E j (6z , z) dVn n Z n
V

> l (B(6z , z) ;z [ Z . (3.2.36)n n Z

This completes the proof of Theorem 2. The mechanical interpretation of the
statement proved, is that there exist infinitely many equilibrium states of the

´ ´adhesively supported von Karman plate. h
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